AI, ML and test automation_cover
Blog

4 key QA activities to solve test automation challenges via AI and ML

How to address the difficulties caused by implementing test automation? Learn how to do it via applying AI and ML.
15 September 2022
Test automation
The article by a1qa
a1qa

Some years ago, AI and ML were privileged and mainly used within tech giants. Time goes by, and now, these innovations entail businesses of any scale, including start-ups, across multiple industries.

Implementing AI- and ML-based technologies provides fast decision-making and better optimization of problem-solving processes. According to the Digital Transformation Trends for 2021 report, 80% of surveyed businesses have proved that AI and ML boost productivity while making companies deliver products faster and increasing ROI.

Within a new era of automation, AI and ML are seen as inevitable parts of software development that strengthen competitive advantage and assist in achieving more accurate results. The same happens with the QA function, test automation included.

However, these technologies are not so easy to implement. Gartner’s research shows that only 53% of projects that introduce AI are successful. In the article, let’s discover the activities for smoothly introducing AI and ML in test automation processes and learn the advantages they bring to the table.

AI- and ML-empowered test automation. Which side are you on?

According to Statista, only the AI market will reach $126 billion in 2025.

Source: Statista

Not that surprising, bearing in mind AI and ML help reach new heights while improving the quality of IT products, speeding up the testing process, and enhancing the overall performance and…

Ensure faster time to market

While traditional test automation helps deliver software faster, introducing AI and ML to the process allows launching IT solutions even more rapidly within ever-evolving software development methods and constantly increasing end-user demands.

Reduce the number of discrepancies

By implementing smart decision-making and automated controlling of processes, companies decrease people intervention, thus eliminating the human factor. Moreover, this frees up QA efforts while allowing specialists to focus on the core objectives.

Improve flexibility

Within continuously emerging changes in software development approaches, QA processes, customers’ needs, etc., AI- and ML-enabled technologies are more adaptable than human beings. Innovations adjust all the necessary components and workflows automatically in a matter of seconds.

Increase the overall test coverage

Automated test coverage detection allows writing much more scripts in an hour as well as running them and getting results — all with the optimized scope.

Reinforce codeless automation

Manually writing scripts is time- and labor-consuming, while AI and ML simplify traditional automated testing within the ability to perform codeless checks. Therefore, smart test automation tools assess QA risks, update test cases, detect issues, prioritize tasks, and many more.

AI, ML, are you there to help test automation?

According to the World Quality Report 2021-22, last year, companies benefited more from implementing automated testing. Two-thirds of respondents (63–69%) perceived better control and transparency of their testing activities as well as increased ROI. But they want more.

Activity #1. Introduce smart test scripts writing

While interacting with the software, AI collects data, makes screenshots, tests the load, and so on. These steps undergo repetitions that help ML technologies learn the expected pattern and compare it to the behavior of the program. When it detects some deviations, the ML algorithms mark it as a potential error. After this, QA specialists manually intervene during the testing process to see if the identified bug is a real problem. The QA experts conduct final verifications to decide what to do next.

Activity #2. Optimize test automation with self-healing AI functions

Self-healing AI tools can easily adapt to changes in the app UI. By running tests, these instruments discover all the elements and occurring activities while recording them and assessing potential QA risks.

When AI- and ML-based algorithms detect some modifications, the tests change automatically. This helps remove threats before they occur while distinguishing whether the program’s behavior is normal or abnormal, and triggering recovery activities when the software has deviations.

Important to mention that AI-based projects provide the whole scope of benefits only in the long-term perspective. As many errors appear for ML, then the more efficient and trusted further performance will be.

Activity #3. Conducting GUI test automation with ML

Testing of the graphic user interface has come to the next level. Now, the old-school process of manually checking UI elements in accordance with mock-ups is automated within ML-powered algorithms.

Image-based testing is becoming the mainstream as ML-powered algorithms recognize different patterns and perform visual verification even on various devices and their configurations.

Given that 81% of consumers are ready to pay more for better UI, there is no room for errors.

Thus, ML-based technologies simplify automated GUI testing and help deliver reliable and user-friendly software.

Activity #4. Automated monitoring

Automation has already reduced human intervention and accelerated testing processes compared to those performed manually. AI- and ML-based technologies speed up workflows even more.

Machines are powerless when performing the tasks that require man’s monitoring and decision-making. To ensure software and hardware operation with no downtimes and pauses for controlling, checking, analyzing, and other human actions, forward-looking companies introduce AI-and ML-enabled algorithms while optimizing routine actions and shortening the delivery time.

Closing remark

Being trending innovations, ML and AI are gaining momentum while helping organizations accelerate time to market and win the competition.

For sure, AI and ML can be used as part of the QA process and will never replace some manual activities or test automation-related checks, anyway for some work, especially mentioned above, AI and ML might be introduced to simplify some QA processes. On the other hand, while introducing such things, it’s important to calculate which efforts on QA will be saved, and which efforts will become extra for other teams. The example is quite simple — the bug submission process. Having in place efforts save for the QA engineer, we should check how much effort will the developer spend to recognize and understand the bug described by AI, check if AI is able to detect duplicated bugs, etc.

With the edge of total optimization of operational and business processes, AI- and ML-powered technologies assist in alleviating test automation workflows and minimize human intervention. Thus, by introducing smart test script writing, ML-based monitoring, self-healing AI functions, and image-based GUI test automation, companies are taking leading positions in the market with error-free and secure software in production.

Reach out to a1qa’s experts to get support on implementing test automation to enhance your software quality.

More Posts

a1qa-articles
31 January 2023,
by a1qa
5 min read
Best of 2022 by executives: 8 most visited a1qa blog posts
Let’s look back and revisit the most visited a1qa articles of 2022!
Quality assurance
Test automation
qa-trends
12 January 2023,
by a1qa
4 min read
The future of software testing: top 4 impactful trends that will dominate in 2023
Consider the major industry trends for the upcoming year to know how to improve current QA strategies and stay ahead of the curve.
QA trends
Quality assurance
Test automation
test-automation
7 December 2022,
by Dileep Marway
3 min read
Release at pace with test automation: What, why, and how to measure success?
An automation-first approach is key to enhancing testing capabilities and increasing overall operational efficiency. However, I would suggest justifying its implementation, so that it can deliver the promised value.
Quality assurance
Test automation
interview-with-dileep
28 November 2022,
by a1qa
9 min read
Interview with Dileep Marway on a series of articles “Agility and speed: Supercharging your business strategies with QA”
We cooperated with the VP of Engineering and Quality at SHL to present you with a series of his blog posts on: culture of happiness, test automation, and Agile-driven QA. Happy reading!
Agile
Quality assurance
Software lifecycle QA
Test automation
qa-trends-in-telecom
30 September 2022,
by a1qa
5 min read
4 telecom trends for 2023 and how to painlessly implement them with QA
It’s time to explore the telecom trends for the upcoming year. Let’s look at them together and also see the value that QA brings for their smooth deployment.
Cybersecurity testing
Migration testing
QA trends
Quality assurance
Test automation
why-do-bugs-get-missed
31 August 2022,
by a1qa
4 min read
Why do bugs get missed? Learn the problems and tips to avoid them
Still, finding overlooked bugs after the app goes live? Let’s find out why this happens and how to fix it.
Quality assurance
Test automation
30 June 2022,
by a1qa
4 min read
App software testing for telecom: What are the common issues telco providers face?
Facing problems with the quality of your telecom software products? Read more in the article and find out the ways to address them.
Cybersecurity testing
Performance testing
Test automation
Mobile app testing
31 May 2022,
by a1qa
4 min read
Mobile app testing guide: win the race with five-star software
Which aspects of mobile apps to test first to produce a really high-quality product? Find the answer to this and other questions related to mobile app testing in the article.
Cybersecurity testing
Functional testing
Mobile app testing
Performance testing
Test automation
Usability testing
Test automation in Agile
20 May 2022,
by a1qa
5 min read
Test automation in Agile and DevOps: Maximizing flexibility and speed
Global market tendencies and user behavior are changing rapidly, if not talking about the software itself. Familiar situation? Find out how to get ahead of the curve with test automation in Agile and DevOps.
Agile
Test automation

Get in touch

Please fill in the required field.
Email address seems invalid.
Please fill in the required field.
We use cookies on our website to improve its functionality and to enhance your user experience. We also use cookies for analytics. If you continue to browse this website, we will assume you agree that we can place cookies on your device. For more details, please read our Privacy and Cookies Policy.